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7
Abs t ’ac t

Thc Fr ank—Wo 1~~ Theoreni s~ i es  that ;i qua~~r a t i c  iun ~- t i ~~o , ~iounded below

on -i none .mpty polyhedra l convex set , at t a  ins t s i n  ~ I rn t here .  ~hi s paper

gives s u f f i c i e n t  condi t ions  u n i e r  which a f uu c~ ion e i t I ~~r a t~i i n S  i t s  i n f i r n i i : i

on a nonempty polyhedra l  conve�c set or is unb~’ur.ded below on some h a i f l i ne  of

that  set.  Qu a d r at i :  f u n c t i o n s  ar ~ shown to  s a t i s f y these s u f fi c i e n t  condi t ions .
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1. In t rodu t ion

The exis tence theorem fo r  q u a d r a t i c  p r ogramming  s t a t t s  t h at  a qu a d r a t i c

f u n c t i o n  Q bounded below on a nonempty  po lvb c m l  convex se t  C a t t a i n s  it ~

inf imum there .  T h i s  resul t  was f i r s t  proved in 1956 by Frank  and Wol fe  [ 1 ] .

Alternat ive p roo f s  have since he. ’n g ivL? n  by C o l l a t z  and W e t t e r l ln g  [2 ]  ( f i r  the

case when Q is conv ex) ,  Eaves (3] and Bluin and O e t t l i  14) .

Eaves [3 ]  a l so  improved on this resul t  by s!swin~ r~ at It Q does not

attain its infirnurn on C, then Q must be unb ounded bel ow on some h a l f i t n e

contained in (~~. Th is W ;~ S first claimed , but not proved , by Dennis in 1959 [5].

2 2 .In (1], the e~~J1p c Q(x.1
,x )) = + (1—x

1
x
2
) is given to show that these

results do not hold in general for higher order polynomials. (Q here does not

attain its infimum , zero , in the plane.) This leads one to ask: what is so

special about a quadratic; and also perhaps , what is so special about polyhedral

convex Sets. Unfortunately , the proofs in [1], [2], [3] and [41 are specificall y

tailored to the quadratic and polyhedral case, and shed little li ght on the

answers to these quest ions .

In tu i s  paper we shall deal with the f i r s t  ques t ion . Let _ A’be t he c l i ~~

of all cont inuous func t i ons  f :  ÷ R
1 
(some n) such that for any polyhedi-al

convex set C C~~~ , f either attains its infimum or C or is unbounded be~ o~

on some h a l f t i m e  contained in C. We shall d e f i n e  a d oss of f unc t ions

wh ich , in par t icular , con tains all quadratic functions , and shall show that ~~~~

is contained (strictly) in

2. ~otation and De~~.initons

Let n denote 11 ,2,... ,r~). For x E R~ , ~ C n, let X ~ R
k 

denot

(x ,. where a = ‘~ k~ ’ ~~ <

rn-— - -



For A E R11
~~~, a 

C m , ~ C n, let A a 
denote the row submatrix of A whose

rows are indexed by a; le t ~~~ denote the column submatrix of A whose

columns are indexed by t~; let A~~ deno te ( A )
8

The symbol II will be used to denote the end of a proof .

A f unc tion f : R~ -
~ R is said to be norm—coercive If u r n  Jf(x.~)j =

k- —~

for every sequence tx
k

} C R~ such that lIm Ii x~~j =

3. The class )1 and some examp les

We de f ine ~~~~~ by induction and the number of variables.

3.1 DefInition : Let f : R~ ÷ R1 be continuous . Then f E i f  there exists

a nons ingular matr ix Q, and a par tition of n , a = a U ~~, such that  g : R~’ 
- R

defined by g(x) = f(Qx) satisfies

( i )  if ~ t 4) then g (x , ~) is a concave func t ion

(ii) if ~ 4) then g is norm—coercive

(iii) if a * 4) and ~ * 4) then for all A and b of appropriate

dimensions , the function h ( . ) ,  def ined by h (x ) = g(x ,Ax +b), is a

member of ) i.
Note tha t for  n = 1, condition (iii) is t r ival ly  sa t i s f ied  since ei ther

a or ~ must be empty. Hence a function of one variable , f, is in if f is

concave or if f is norm—coercive and continuous.

Note also that the induction step in the defn of is in condition (iii).

3.2 Examples

(1) All continuous norm—coercive functions are In

Set Q = I , ci = = ~‘ in Definition 3.1

( ii) Al l  con cave f unctions are in 27~
Set Q I , ~ 4), ~ 

n in Def in i t ion  3.1

(ill) All quadratic functions are in

2

-

.

~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~—----—- - . -  ~~~~~~~~~~~~~~~~~~



We shall prove this by induction on n , the number of

variables. Let

f(x) = c
1
x + l T D x € R° .

If n = I then f is either concave or f(x) -+ as l x i
and we are done.

Suppose the result Is true for quadratic functions of

n—I variables or fewer . Without loss of generality we may

assume that D is symmetric . Hence there Is an orthogonal

matrix Q such that

Q
TDQ = Diag (A1,.. .,A )

where the A . are the real eigenvalues of D.

Set d = Q
T
c and g(x)  = f ( Q x ) . Then

g(x) = ~ (A
1
x .~ + d1x .) + ~ (A .x .~ + d .x.)A . >O A . <O

1 1—

Let ci = {i A~ > O} , B = {i. : A . < O}. Then a and B partition

n , and g(x) clearly satisfies conditions (i) and (ii) of

Def in i t ion  3.1.

A L so , since fo r  any A and h , g(x~~, Axa + b) is a

qu a d r at t c  f u n c t i o n  in fewer variables, the in d u c t i o n  h y p o t h es i s

app lies and condit ion ( I i i )  of De fin I t i on  3.1 is es tab l i shed .

(iv) Any function of the form

T k T inf ( u ,v) = [u Bu] — (v Dv)

where B is positive definite , 0 is positive sernidefinite and

k > in > 0, is in

Set Q = 1, and ident i f y x w i t h  ii and x , with v.

Since B Is ‘iositive definite

X T BX ~,i Jx~~ 
2 V x (1)

where ~ > 0 is t h o  - sn a l les t  .~igenva 1iie of B.

-3 

~~~~~~~~~~~~~~~~~~~~~~
--  --~~~~~~~~~~~ - -•-~~~~~ - • — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r -- - -

~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~ - = ~~~~~~~~~~~~~~~~~~~~~~~~~~~
---

Since D is positive semi—definite , and the  func ti on

rn - T m is convex
t is nondecreaslng in t 0 , (x~ DX

B
)

in x
N

Hence conditions (i) and (Ii) of Definition 3.1 are

satisfied.

Further , since D Is positive semi—definite ,

T 2o < X
B 
Dx

B 
< n l~ X B

I I  V X
B

where ri > 0 is the largest eigenvalue of D. Thus fur

any A and b

o (Ax + b)TD(Ax + b)

~ 
n 1 Ax + b 11

2

< n(~i~ X i i  + b~)
2 (2)

where ~i is the largest row norm of A.

CombinIng (1) and (2) we obta in

f(x ,Ax + b) > ~k
, 1 ~~~i i 2k 

- 
m

1 1 ,  ~, +
The right hand side of this inequality is a polynomial in

I! x~~ with leading coefficient > 0. Hence

f(x ,Ax + b) -~ - as x —
~ . This establishescx cx a

condition (iii) of Definition 3.1 by an application of

examp le (i).

Remark: Example (iv) shows that the class ,.-~Y
’ is indeed interesting, that is ,

consists of functions to which the Frank—Wolfe theorem as it

stands is not applicable.

4
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4. Pre. na resntt s.

Let C be a nonempt y polyhedral convex set of the  form

C = {x € R° : Ax > b ’~
mxnwhere A~~~R

4.1 Definition: Let x € C , and let y = {i : A 1• x = b 1L I 1IIJU x is

called a pseudo—extreme point of C if x uses l inea r ly  ind ep ~ nd e a t coismu m of

A , i .e .  if  ó = {j :  x .*0J then A has f u l l  column rank.
V J

For convenience , when A is the zero matrix , define the  o r i g i n  to  be

the pseudo—extreme point of C.

One can easily show tha t  C always has pseudo—extreme p o i n t s .  F u r t h e r m o r e ,

it follows by Lemma 4 . 3  (stated below) that  the extreme p o i nt s  of C , wuen they

exis t , are pseudo—extreme points of C.

Geometrically, the pseudo—extreme points of C are thc extreme points of

all the sections of C at x = 0 where ci ranges over all subsets (including

the empty  set) of n

In the following examp les , the pseudo—extreme points are marked with

aste riscs. The set C Is the shaded area.

-l -l ~1 L1( i )  C = {  I :  < )
x21 ~~1 1 x2 

—~~~ 2

x
2\

~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Fig. 1
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(ii) C = 
c (~ ) : 

(
~ ~

)(
~~) (~)}

x
- 

\\~

______ _________ * 

Fig.  2

The following theorem shows that C has a representation in terms of its

pseudo—extreme points.

4.2 Theorem: C has a representation

C = is + ~ t : s E S , t € T , ~i > 0)

where S is vex hull of t h e  pseu do—c xt reme points  of C , and 1 is the

intersecti iedral convex cone with the unit sphere .

To pr ove L i t s  ~ su lt , we require ~ lemmas.

4.3 Lemma : Let x ~ C and let = fi : A . x = b .}. Then x is an extreme

point of C iff the  rack of A is n.

4.4 Lemma : If C has extreme points then C has the representation

C = {s + ~i t  : s E S. t E T, > 0) where

S is t h e  convex h ull of the  extreme p o i n t s  of C an T is the Int er ect ~~n

of a polyhedral convex cone with the unit sp h er e .

The proofs ci these two lemmas can be found In Gui Jr:. in [6 ~~.

In the following , let x
+ 

and x denote the p osi t i .e and n&~~a t  i ve ~.irts

of x , respectivel y.

4.5 Lengna : Let C = I > 0 : Au — Ày ~ hr . Then x is a pseudo—extreme
V —

+
point of C If and onl y it  X Is an extreme point of C.

x
6

—1
- -  



Proof: Let x be a pseudo—ext r eme  point  of C. l e t  y = I i  : A~ x = b~~}.

1~~Then since x uses l i n e a r l y  independent column s of A , 
X uses

l inearLy independent column s , say ~ C 2n , of th~’ p a r t i t i o n ed  mat r ix  (A ,

Let B (A, —A) and let I be the identity matrix of dimension 2n.

Then C can be written as

~ ~
) :~~~ ) < ( ~)}

where

+
Thus the row submatrix  of A corresponding to the constraints which (~~satisfies with equality is

B
‘I, .

where Ô denotes 2n ‘
~~ ó

Rewri te  this matr ix  as

B B —
‘Y~

ts

0

Since B , and I-~ both har’e full column rank it follows that

(
B

rank — 2 n

\

By lemma ~~~~ 
X 

is an ext reme point of C , and the f i r s t  imp lication is
x /

es t ab l i shed .

7
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The converse follows easily along similar lines. II

Proof of Theorem_4 . 2 :  Let C be as in the statement of Lemma 4.5.

Since C has pseudo—extreme points , It follows by Lemma 4.5 that C has

extreme points.

Thus by Lemma 4 . 4  C has a representation

= ( (s ,
’~

) 
+ p (t ,

I

,) : ( , ‘,J E 
~~~

, 

~ 
E 1, p > 0)

where S is the convex hull of the extren~ p’ints of C, and T is the

intersection “f a polyhedral convex cone with the unit sphere.

Now C can be wr i t t en  as

U —

C {u—v : E C )
V

Hence

C = {(s ’ — s”) + p ( t ’— t ”) : (s e) E g , (t ,,) E T, ~ > 0)

Set

S = {s ’—s ” : i:~’~ ~
Then by Lemma 4.5 S is the convex hull of the pseudo—extreme points of C.

Set

T {.fr-~ ~~ 
: ~ 1 , t ’ — t ” * 0)

Then

C = [s + pt : S E S . t E T , p > 0)

as required.

Theorem 4.6: Let g : C -~R be concave . Then either g attains its infimum

at a pseudo—extreme point of C or g is unbounded below on some half line of C.

In 1961 Hirsch and Hoffman [7~ proved a similar theorem 
using a different

representation of C. They decomposed C as

C M O  L 

~~~~~~~~~~~~~ — - ~~~~~~~~~~~~~~ - -
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where L is a linear subspace and M Is the  L — section of C, and showed

that a concave function bounded below on C attains its infimum at an extreme

point of M. In fig. 1 the extreme points of M are circled. Note that they

are not the same as the pseudo—extreme points of C.

Proof of Theorem 4.6:

Let {p1,. . ,p~) be the set of pseudo—extreme points of C.

Let

g(p ) = mm g(p
1
)

m 1<ick

Let S and T be as in Theorem 4.2.
k

For any s E S ~ A
1 

> 0 , 1 = 1,... ,k, ~

‘ A
1 1 such that

1=1
k

= 
~
i=l

By the concavity of g,

k k
g(s) g( ) ~~~~~ > ~ A .g(p.)

1=1 1 
1=1

1 1

Hence g(s) > g(p ) V~Es. (1)

Now suppose that g does not attain its infimuin at a pseudo—extreme point of

C.

Then by (1) B x ~ C \ S with

g(x)  <

By Theorem 4.2 x can be written as

= S + ji t

for some s E S, t E T , p > 0.

Since x ~ S, p > 0.

9
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Further , the half—line

H Is + ~ t : ~ >

is contained in C.

Now

s + p t  (l— ~~-) s + (~-)(s +~~t ) .

Since g is concave

g(s + U t )  > (1 — -~-)g(s) + (~-)g(s + ~.t )

Upon rearrangement we get

g(s  + E~t) < g(s) — (g(s ) — g(s +

Since

g(s) — g(s + p t )  > g(pm) — g(x)  > 0

it follows that

g(s + ~ t )  — as ~ -
~

i .e .  g is unbounded below on H.

‘-
The following result is of interest in its own ri ght .

Theorem 4 .7 :  Let g : -
~~ R , n > 2 , be continuous and norm—coercive .

Then g is either bounded above or bounded below.

The proof of this result uses the concept of path connectedness. A set

D C R~ is said to be path connected if for any x , y E D the re is a continuous

mapping p : [0,1] -
~ D such that  p(O)  = x and p(l) y.

Let K denote the closed ball of radius r , and K its complement . Forr r
n > 2 K is path connected .

10



Proof of Theorem 4.7: By assumption on g, t i t - r e  exists r > 0 such that

x E K ~g(x)~ 1. (1)

We shall show that eithe r g(x) > 1 ‘V x € K ~~ ( < ~~ ~~- 
1 1 x C K

If not, ~ x, y E K ~~ g(x) > I and g(y — 1. S I n e is path

connected there is a continuous mapping p : 10 .1 1 K ~ p(O; — x p(y) = 1

Since g is continuous , the mapping h : [0,11 * R defined b i

h ( t )  = g(p(t))

Is continuous. Moreover h(O) > 1 and h(l) < — 1. By the intermediate value

theorem there exists t
0 
E [0,1] such that h(t

0
) = 0,

i.e. g(p(t
0
) = 0

Since p(t0
) E K

r this contradicts (1).

Hence g is either bounded above or below on K .  Since K
r 

is compact and

g is continuous, g Is bounded on K
r• / /

The following theorem is obtained as a consequence of the above result.

Theorem 4.8: Let g : R” -
~

- R be continuous and norm—coercive .

Let P be any nonempty closed convex set. Then g either attains its infimum

on P or is unbounded below on some half—line contained in P.

Proof: If g is bounded below on P, then

lx ii -‘- ~, x E P g(x) -
~

Thus for k sufficiently large the set

R = {x : g(x) < k} fl P

is nonelnpty and compact .

Since g is continuous g attains its infitnum on R. The infimum of g on R

is equal to the infimum of g on P and we are done.

11
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Suppose g is unbounded below on P. Then since g is  continuous, there is

a sequence I x )  C P ~ g ( x )  — ~ and li x ~

ii = 1, one of t he  h a l f — L i n e s  P ñ [— , i~~ , [0 , ) w i l l  do .

if  n > 2 , i t  f o l l o w s  by Thu orem 4 . 7  tha t

j x  ~~~~~~ x E P~~~g(x) 
-
~~~ —~~~~- .

~ i. - -
~ air. unbounded convex set contains half—lines , any half—line in P w i l l  do.

II

~~~ ~einma : Let  1(b ) = Cx A x b } .  Then the re  is a finite collection

S )  i ,.. , ~} ~hie re ~. C m , ~. C n such tha t
I I I — —  ~~~~~~~~

x is a pseudo— ext r eme  p o i n t  of P ( b )  there  exists i ~ ~ such tha t

(i) b

(ii) exists

(iii) x = 0 where .S . = n ~ ó .
I -- 1

I

The proof is immediate from Definition 4.1 and will be omitted.

5. Proo~ of the main result: C ~~

The proof is h” induction on the number of variables.

L et  C be any non—empty  pol yhedral convex set def ined  by

C = {x E R’~ : A x < b~
- mxnwhere  A t ~~~

For n 1, if f E ’ then f is either concave or lf ( x )l 
-

~ 
as x~

In the  f o r m e r  ct-se , Theorem 4 .6  applies. In the latter case , Theorem 4.8 appl ies.

Suppose the  resul t  holds for  all k < n. Let f E)?,f : R~ H.

Let Q, ~ and ~ be as in de finition 3.1. Since Q is nonsingular , it

suffices to prove t he  result for g defined by

12 
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g(x) f(Qx)

on the set

C = Ix : A x < b}

where A AQ .

If either a — • or 
~ •, then g Is either concave or norm—coercive

and we can use Theorem 4.6 or 4.8.

So assume a * •, ~ * •. Let {X
k
} = {(xk, x~)} be a minimizing sequence

for g In the sense that g(xk)~ i — 
~ if g is unbounded below on C, or

else

inf {g(x) : x E~~} = p > - (say) .

Now for each k, hold xk fixed and solve

mm g(x~,u8
)

subject to ~~ Ck ~ fy : ~~~~~ + A .By < bI. Since g(x~, •) is concave,

we can apply theorem 4.6:

If g (x~, •)  is unbounded below on then there is a half line

{s + pt : p > 0) C C
k such that

$ + j i t )  -~ - as ii -~~ ~~ .

i.e. g Is unbounded below on the half—line

kx 0 
—

C C
S t

and the result is proved .

Otherwise, V k , g (x~
’, •) attains its infimuni at a pseudo—extreme point

E C~. By Lemma 4.9 there exists (yi,dj) such that

13 
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(1

exists (1)

= 0 where 3 .  ~ ‘

~
‘

k k
Since the pair (x ,u )  is feas ib le

A7,, l~~~ < b~ - A
7 

~
k ( 2 )

where y.

Since there are only finitely many such ~~~~~~ there is an infinite

subsequence K such that some (y. ,.
~ •)  = (y, 6 )  ( say)  is repeated fo r  all  k E K.

Using (1) to e l imina te  u~ 
f rom (2)  we get , ~�k E K

k ku = d - Dx
CL

kBx <

where

= 
( : )  

= ( A 
b )

A~~~ A

0 =  
— 

=

1), 0

c =  b — A-- d
7 1~

B A .. -A

.

~~~~~~~~~~~~~~~ --. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Now since ((x
k
,x~)} is a minimizing sequence for g(’) on C, it follows

that 

k 

is a minimizing sequence for g () on C since by definition

of

k k  k kg(x ,u~~) < g(x ,x~)

k k  k k ~ k
But (x~~ u

f
) = (x , d — Dx) v k E K. Hence is a minimizing sequence

for  h ( )  on ~ where

h ( z )  g(z , d — Dz)

= Ix : Bz < c}

We can now apply the induction hypothesis to h(’) on C using condition

( i i i )  of Defini t ion 3.1 as follows :

If g is bounded below on C then

g(x k ,x~ Y~ p as k ~

so that

d - Dxk) = h(x
kyhg p as k -~ ~~, k E K.

Hence there exists E C such that h(x ) = p i .e.  g(x , d — D x) =

and we are done.

Otherwise g(x
1
~,x~) 

‘
~~ — so that h(zk) \i — ~~, k E K , i .e .  h ( ’)

is unbounded below on ~~ . Hence there exists a half—line Is + pt : u ‘> 0) C ~

such that

as ~~~~~

i.e. g ( .)  is unbounded below on the half—line

( S  It
0 0 }

— Ds ~—Dt

In C. T~i~~s completes the  p roof .  /-

15

-~~~~~~~~ 
~~~~~~

_ _
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



, .-*~~—~~~~~~~~~~~~~~~~~~~~~~~~~~ —— --
~~~~~

, , . —-—- ---— - -
“ I’

We mi ght  ask quest ions  about  the  s t ruc tu re s  of r-I and

( i)  Nei ther  is closed under  a d d i t i o n

e .g .  Let f ( x )  = e
X 

+ e~~ , g(x) = — cx Then both  f and g E
(~
l

but f + g ~ I’. This  examp le also shows tha t /1 is pr ope r ly

contained in

( I i)  ~t~~is closed under a r b i t r a r y  linear linear t r ans format ions  of the variables

whereas is n o t .
‘fl

To prove the first assertation , let f E ‘1’, and let C = {x : Ax b .}.

We must show that f(Bx + d) has the required properties on C.

Let F: = {(x , v) : Ax < b , y = Bx + d J . Since E is a polyhedral

convex set , ir~s projection onto y space , ifE is a polyhedral convex

se t .

If

i n f { f (B x  + d) x E E} = p > —

then

inf~ f(v) : i E H L } p.

Since f C ”?’, there exists y E ~T E such that f(y) p

By definition of ~E there exists x E C such that y = Bx + d.  Hence

f(By + d) = p. and we are done .

U f ( B x  +d) is unbounded below then f ( y )  is unbounded on TiE.

“ k nee h a l f — l i n e  H = ~s + )i t : )J > o} C irE such that

f ( y )  • — ~‘ as f y ~ ~
‘, y ~ H.

De ’ ine t i e  l i n e a r  map h : C -* R ° by

h(x) = Bx + ci.

Then h ’  I n e ar i t y  of h ( ) ,  h 1(H) is an unbounded convex subset

of C , - nd hC~~CV c o n ta i n s  ~ h a l f — l i n e , C.

Thus  f ( f ~x + d) — i~~ I l x i o , x E C, as required .



To show ,~t/Is not closed under arbitrary linear transformations of

the variables , cons ider

2 2
1(x) = eX EA .

2
The function f(y + z) e(Y+Z) Is concave neither In y nor z,

and along the ray y — z , If(y+z)i -_./4 c~, i.e. f(y+z)

Note that is however closed under nonsingular linear transformations

of the variables. This follows by definition of
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